Photo credit:

Reports

Product transparency and informed choices by purchasers drive demand for healthier products and manufacturing processes. HBN's rigorous independent research reports are available to download below.

Phthalate-free Plasticizers in PVC

2014

This Healthy Building Network (HBN) Research Brief examines replacements for phthalate plasticizers in Polyvinyl Chloride (PVC) building materials. Plasticizers are added to PVC to make it flexible, but since they are not tightly bound to the PVC molecules, they migrate from PVC products. Phthalates, the most commonly used plasticizers in PVC, are known endocrine disruptors – chemicals that interfere with hormone signaling, which is especially critical to early childhood development. Additionally, many phthalates are known carcinogens and reproductive and developmental toxicants. Exposures to these toxic plasticizers from PVC products can occur throughout their lifecycle. Therefore, it is crucial that PVC products containing phthalate plasticizers be eliminated from the built environment.


Full Disclosure Required: A Strategy to Prevent Asthma Through Building Product Selection

2013

Asthma rates in the United States have been rising since at least 1980. Today, nearly 26 million people are affected by chronic asthma, including over eight million children.  These rates are rising despite the proliferation of asthma control strategies, including indoor air quality pro- grams. The Centers for Disease Control (CDC) reported that the number of people diagnosed with asthma grew by 4.3 million during the last decade from 2001 to 2009.  As asthma affects more people, it becomes increasingly clear that new strategies need to be considered, focusing on the prevention of asthma onset. Few strategies are in place that effectively prevents exposure to chemi- cals that cause asthma. Due to the complexity of this condition conventional efforts have largely focused on asthma management.  Health organizations have identified a number of chemicals that are known to cause the onset of asthma, and are therefore labeled asthmagens.  Since these chemicals are common ingredients of many interior finishes, like floors, carpets, and paints, it is possible to improve asthma prevention strategies by reducing or eliminating these chemicals from building materials.  The Healthy Building Network (HBN) took a three-pronged approach that examined how pervasive asthmagen chemicals are in the built environment, what steps have been taken to address them, and what further actions are needed.


Avoiding Contaminants in Tire-Derived Flooring

2013

The benefits of reusing tire scrap are obvious. It diverts millions of tires from the solid waste stream. It saves energy and resources. It avoids new or additional toxic manufacturing inputs.  Heaps of scrap tires are no better than reservoirs loaded with fly ash from coal fired power plants. Both fly ash and tire scrap are on the edge of being classified as hazardous wastes. Pollutants rise from festering pools of ash and smoldering piles of tires. The toxic compounds fall into nearby communities. Beneath these stews, heavy metals and polyaromatic hydrocarbons migrate into streams and aquifers.  But does shifting these wastes indoors represent a positive alternative?

Avoiding Contaminants in Tire-Derived Flooring describes the origins and fate of crumb rubber used in building materials. It concludes that tires contain a host of toxic ingredients to which people may be exposed when this material is brought into homes, schools, gyms and offices.


Resilient Flooring & Chemical Hazards: A Comparative Analysis of Vinyl and Other Alternatives for Health Care

2009

Resilient Flooring & Chemical Hazards: A Comparative Analysis of Vinyl and Other Alternatives for Health Care addresses resilient flooring, evaluating potential health impacts of vinyl flooring and the leading alternatives – synthetic rubber, polyolefin and linoleum — currently in the health care marketplace. The study inventories chemicals incorporated as contents in each of the four material types or involved in their life cycle as feed- stocks, intermediary chemicals, or emissions. It then characterizes those chemicals using a chemical hazard-based framework that addresses:  persistence & bioaccumulation, human exposure, and human toxicity.


Environmental Impacts of Polyvinyl Chloride Building Materials

2002

In the last 40 years, polyvinyl chloride plastic (PVC) has become a major building material. Global vinyl production now totals over 30 million tons per year, the majority of which is directed to building applications, furnishings, and electronics. The hazards posed by dioxins, phthalates, metals, vinyl chloride, and ethylene dichloride are largely unique to PVC, which is the only major building material and the only major plastic that contains chlorine or requires plasticizers or stabilizers. PVC building materials therefore represent a significant and unnecessary environmental health risk, and their phase-out in favor of safer alternatives should be a high priority. PVC is the antithesis of a green building material. Efforts to speed adoption of safer, viable substitute building materials can have significant, tangible benefits for human health and the environment.  This report describes the full life cycle of PVC in the contemporary building industry from production to disposal.